
Eur. Phys. J. A 11, 175–183 (2001) THE EUROPEAN
PHYSICAL JOURNAL A
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Abstract. A relation linking the normalized s-wave scattering and the corresponding bound state wave
functions at bound state poles is derived. This is done in the case of a non-local, velocity-dependent
Kisslinger potential. Using formal scattering theory, we present two analytical proofs of the validity of
the theorem. The first tackles the non-local potential directly, while the other transforms the potential to
an equivalent local but energy-dependent one. The theorem is tested both analytically and numerically
by solving the Schrödinger equation exactly for the scattering and bound state wave functions when the
Kisslinger potential has the form of a square well. A first order approximation to the deviation from the
theorem away from bound state poles is obtained analytically. Furthermore, a proof of the analyticity of
the Jost solutions in the presence of a non-local potential term is also given.

PACS. 03.65.Nk Scattering theory – 24.90.+d Other topics in nuclear reactions: general

1 Introduction

The extrapolation of the scattering wave functions to
negative energies corresponding to the bound state poles
has been carried out in previous works [1–3]. Goldberger
and Watson [1], and Joachian [2] have derived a relation
linking the normalized scattering and the corresponding
bound state wave functions at bound state poles. They
showed that the relative normalization, which is the ratio
of the normalized bound and scattering wave functions at
a bound state pole, depends on the details of the potential
through the corresponding Jost functions and their deriva-
tives. A more recent work [3], concluded that the relative
normalization does not depend on the details of the po-
tential but is uniquely given by the bound state binding
energy. This was done for the case of a local potential.
The case of a non-local but separable Yamaguchi poten-
tial was also studied and the relative normalization was
found to be uniquely determined by the binding energy,
provided the binding energy is small [4]. Such a theorem
would be useful in final-state interaction theory. For ex-
ample, it allows one to predict the cross-section for pp →
pnπ+ in terms of those for pp → dπ+ and pp → ppπ0 at
low energies [5,6].

In this work we have extended the theorem to the
case of non-local, velocity-dependent Kisslinger potential
in the s-wave case. Following closely the method devel-
oped in [3], we present two analytical proofs of the theory.
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The first deals with the non-local potential directly, while
the other begins by transforming the potential into a lo-
cal but energy-dependent one. We also derive an analytical
form for the deviation from the theorem away from bound
state poles.

The velocity-dependent potential was introduced to
describe the scattering of particles off complex nuclei [7].
It was designed to provide a kind of optical potential for
pion-nucleus scattering, and took account of the predom-
inantly p-wave nature of the elementary pion-nucleon co-
herent scattering. Kisslinger theory resulted in a term pro-
portional to

∇ · (ρ∇ψ) = ρ∇2ψ + ∇ρ · ∇ψ. (1.1)

The first term on the right is proportional to the kinetic
energy and combines with the kinetic energy term in the
wave equation. The second term is proportional to the rate
of the change of density, thus it is sensitive to the diffuse
edge in nuclei. Consequently, Kisslinger potential was able
to predict the large backward scattering in the scattering
of mesons by light nuclei, where the effect of a diffuse edge
is important. A velocity-dependent potential was also used
to replace the hard-core nucleon-nucleon potential in order
to explain the isotropy of the p-p differential cross-section
at 100 MeV [8].
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2 Non-local velocity-dependent Kisslinger
potential

The non-local velocity-dependent potential V (r) derived
by Kisslinger [7] may be written as

2mV (r) = U(r) + ∇ · (ρ(r)∇), (2.1)

where the reduced potential U(r) and the non-local term
ρ(r) are real, spherically symmetric functions of the ra-
dial variable r. For a particle of mass m and energy
E = k2/2m, the s-wave Schrödinger equation including
the non-local potential may be written as

(1 − ρ(r))
d2v(k, r)

dr2
−

[
dv(k, r)

dr
− v(r)

r

]
dρ(r)
dr

× k2v(k, r) = U(r)v(k, r). (2.2)

We shall start by deriving the conditions that U(r)
and ρ(r) must satisfy such that the above equation has
well-behaved, physically acceptable solutions.

2.1 Small r behavior

Equation (2.2) may be written in the form (the depen-
dence of ρ on r is suppressed for clarity of presentation):

v′′(k, r) − ρ′

(1 − ρ)
v′(k, r)

× 1
(1 − ρ)

[
k2 +

ρ′

r
− U(r)

]
v(k, r) = 0, (2.3)

which, in the standard form, is expressed as

v′′(k, r) + P (r)v′(k, r) + Q(r)v(k, r) = 0. (2.4)

For (2.3) to be regular at the origin, we require:

lim
r→0

rP (r) < ∞, lim
r→0

r2Q(r) < ∞. (2.5)

It is clear from (2.3) that ρ(r) must not equal to the value
of 1. So for all r either ρ(r) < 1 or ρ(r) > 1.

In the vicinity of the origin, we may assume the local
and non-local parts of the potential to behave as

U(r) ≈ c0 rq, ρ(r) ≈ b0 rp. (2.6)

If p > 0, it follows that ρ(0) = 0 and ρ(r) < 1 for
all r. In this case eq. (2.3) is regular at the origin provided
q ≥ −2. Using the expansion

v(k, r) =
∞∑

n=0

anrn+s, (2.7)

and (2.6), eq. (2.3) reads
∑

n

an(n + s)(n + s − 1)rn+s−2 − pb0

∑
n

ansrn+s+p−2

+ k2
∑

n

anrn+s − c0

∑
anrn+s+q = 0. (2.8)

For q > −2 the corresponding indecial equation is

s(s − 1) = 0. (2.9)

According to the theorem of Frobenius, we obtain the se-
ries solution v(k, r) ≈ r near the origin. Hence, we may
impose the boundary condition

v(k, 0) = 0. (2.10)

For q = −2 if we consider the coefficient of rs−2 it is
easy to see that physical solutions can only be obtained if
c0 > −1/4 [1].

In the case p < 0 then ρ(r) is singular at the origin.
If ρ(r) is repulsive near r = 0 (b0 > 0), then ρ(r) > 1 for
all r. However, if b0 < 0 near the origin then the non-local
part is attractive close to the origin and ρ(r) < 1 for all r.
In either case, the term 1 − ρ(r) ≈ −b0r

p close to r = 0,
and eq. (2.3) is regular at the origin provided q − p ≥ −2.
We then obtain

∑
n

(n + s + p)(n + s − 1)anrn+s−2 − k2

b0

∑
n

anrn+s−p

+
c0

b0

∑
n

anrn+s+q−p = 0. (2.11)

If we choose the minimum value q − p = −2 and con-
sider the coefficient of rs−2, it is not difficult to see that
for (2.3) to have physically acceptable solutions, which are
regular at r = 0, then the ranges of b0 and c0 are limited
according to

c0

b0
≤ 1

4
(p + 1)2. (2.12)

However, in order to have wider applicability we shall
assume q − p > −2. In this domain the indecial equation
of (2.11) reads

s2 + (p − 1)s − p = 0. (2.13)

Consequently, in the vicinity of the origin v(k, r) ≈ r or
r−p. And therefore, by the theory of Frobenius, we get at
least one series solution of the form (2.7) corresponding
to the larger value of s. Therefore, we may impose the
boundary condition given in (2.10). In sect. 3 we shall
return to the allowed values of p.

2.2 Large r behavior

To determine the behaviors of the terms U(r) and ρ(r)
at large distances, we write v(k, r) = g(r)eikr and as-
sume g(r) to be a slowly varying function. Substituting
for v(k, r) in (2.2) and ignoring the small term g′′(r) re-
sults in

ln(g(r)) =
∫ ∞

b

U − ρk2 + (ik − 1/r)ρ′

2ik(1 − ρ) − ρ′
dr′, (2.14)
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where b > 0. For g(r), and hence v(k, r), to be finite we
require

lim
r→∞U(r) =

M

r1+ε
, (2.15)

and

lim
r→∞ ρ(r) =

N

r1+ε
, (2.16)

where ε > 0, and M , N are finite constants. That is at
large distances both parts of the potential must fall off
faster than 1/r.

3 Analyticity of the Jost solutions

As shown in Appendix A, the reduced scattering wave
function v(k, r) may be expressed as a linear combination
of Jost solutions and functions viz.,

v(k, r) = − 1
2ik

1√
1 − ρ(r)

1
|f(k)|

× [f(−k)f(k, r) − f(k)f(−k, r)] , (3.1)

where the Jost solutions behave asymptotically as

lim
r→∞ f(k, r) = e−ikr, lim

r→∞ f(−k, r) = eikr. (3.2)

The Jost functions are defined as

f(±k) = f(±k, 0). (3.3)

The analyticity of the Jost solutions in the presence of
the non-local term ρ(r) is proved in Appendix A, provided
ρ(r) satisfies the following conditions:

∫ ∞

0

r |ρ′′(r)|dr < ∞,

∫ ∞

0

r2 |ρ(r)|dr < ∞. (3.4)

The first condition implies that ρ′(r) diverges less than
1/r for small r. This condition is satisfied if in the vicinity
of the origin ρ(r) ≈ b0r

p where p > 0. However, the second
condition demands that ρ(r) falls off faster than 1/r3 at
large distances. As for the local part, it should satisfy

∫ ∞

0

r |U(r)|dr < ∞,

∫ ∞

0

r2 |U(r)|dr < ∞. (3.5)

Those are the same conditions in the standard case where
ρ(r) = 0 , suggesting that U(r) diverges slower than 1/r
for small r and falls off faster than 1/r3 at infinity.

The boundary conditions in (3.2) define f(k, r) in the
lower half of the complex k-plane, while f(−k, r) is defined
in the upper half and each is analytic in the region over
which it is defined. The analyticity of the Jost solutions
may be extended if we impose the conditions

∫ ∞

0

dr emr |U(r)| < ∞,

∫ ∞

0

dr emr |ρ(r)| < ∞, (3.6)

where m is real and positive. Then f(k, r) is analytic
for Im(k) < m/2, while f(−k, r) is analytic for Im(k) >
−m/2. It follows from the boundary conditions (3.2) and
the form of eq. (2.2) that in the region of analyticity, in-
cluding the real axis, the Jost solutions and functions sat-
isfy the conditions

f∗(−k∗, r) = f(k, r), (3.7)

and

f∗(−k∗) = f(k). (3.8)

The symmetry properties of the Jost solutions and
functions stated above imply that v(k, r) in (3.1) is real for
real values of k. The scattering function may be expressed
in the form

v(k, r) = − 1
2ik

1√
1 − ρ(r)

×
[
e−iδ0(k)f(k, r) − eiδ0(k)f(−k, r)

]
, (3.9)

where δ0(k) is the s-wave scattering phase shift. In terms
of δ0(k) the scattering matrix S(k) is defined as

S(k) =
f(k)

f(−k)
= e2iδ0(k). (3.10)

Using (3.2) and the fact that ρ(r) and U(r) both vanish
faster than 1/r at infinity, then v(k, r) behaves asymptot-
ically as

v(k, r) =
1
k

sin(kr + δ0(k)). (3.11)

As explained in Appendix A, provided the boundary
conditions in (3.6) hold, v(k, r) can be analytically contin-
ued from the real axis into the upper half of the complex
k-plane. The zeros of the Jost function f(−k) situated on
the positive part of the imaginary axis are simple, and are
poles of the scattering matrix S(k), corresponding to the
positions of bound states. Indeed, for k = iλ with λ > 0,
using (3.1), we have

v(iλ, r) = − 1
2λ

1√
1 − ρ(r)

1
|f(iλ)|f(iλ)f(−iλ, r) =

− 1
2λ

1√
1 − ρ(r)

eiδ0(iλ)f(−iλ, r), (3.12)

which at infinity behaves as

v(iλ, r) = − 1
2λ

1
|f(iλ)|f(iλ)e−λr = − 1

2λ
eiδ0(iλ)e−λr.

(3.13)

The function v(iλ, r) vanishes at the origin and decreases
exponentially at large distances. Hence, it is a square in-
tegrable function.
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For bound states, the s-wave Schrödinger equation in-
cluding the non-local term is

(1 − ρ(r))
d2u(r)

dr2
−

[
du(r)

dr
− u(r)

r

]
dρ(r)
dr

− λ2u(r) = U(r)u(r), (3.14)

where u(r) is the reduced bound state wave function sat-
isfying the boundary conditions

u(0) = 0, lim
r→∞u(r) → e−λr. (3.15)

In the vicinity of an isolated bound state pole it is
possible to parameterize S(k) as

S(k) = e2iδ0(k) =
[NG(k)]2

λ + ik
, (3.16)

where N2 is the residue at the bound state pole. In the
unitarized scattering length approximation N2 = 2λ and

G2(k) =
λ − ik

2λ
. (3.17)

In general G(k) is an analytic function of k in the vicinity
of k = iλ with the condition G(iλ) = 1.

The boundary conditions imposed on the scattering
and bound state wave functions at the origin and at in-
finity, combined with the reality of U(r) and ρ(r), ensure
that, for k real, v(k, r) and u(r) remain real for all values
of r. The scattering wave function, v(k, r), can then be an-
alytically continued in k to the position of a bound state
pole k = iλ on the positive imaginary axis. However, spe-
cial attention must be given to the singularity structure
of the factor eiδ0(k) as it has a branch cut at the position
of the pole. Making use of eq. (3.16) at the position of a
bound state pole, we get[√

2λ(λ2 + k2) v(k, r)
]

k=iλ
=

−
[√

λ + ik eiδ0(k)
]

k=iλ
f(−iλ, r) = −Nu(r). (3.18)

Now our aim is to show that N is uniquely determined
by the normalization of the bound state wave function.
Multiplying (2.2) by u(r) and (3.14) by v(k, r) and then
rearranging, gives

d
dr

{(1 − ρ(r)) [u′(r)v(k, r) − u(r)v′(k, r)]} =

(λ2 + k2)v(k, r)u(r). (3.19)

Integrating the above equation, and noting that both u(r)
and v(k, r) vanish at the origin, results in

(1 − ρ(r)) [u′(r)v(k, r) − u(r)v′(k, r)] =

(λ2 + k2)
∫ r

0

v(k, r′)u(r′)dr′. (3.20)

As r → ∞ both sides of the above equation vanish. To
avoid this, define

w(k, r) = 2ik
√

λ + ik v(k, r), (3.21)

which by eq. (3.16) has the limit at the pole

w(iλ, r) = Nu(r). (3.22)

Differentiating the resulting

(1 − ρ(r)) [u′(r)w(k, r) − u(r)w′(k, r)] =

(λ2 + k2)
∫ r

0

u(r′)w(k, r′)dr′, (3.23)

with respect to k, leads to

(1 − ρ(r)) [u′(r)ẇ(k, r) − u(r)ẇ′(k, r)] =∫ r

0

[
(λ2 + k2)ẇ(k, r′) + 2kw(k, r′)

]
u(r′)dr′, (3.24)

where the prime refers to differentiation with respect to r,
while the dot is that with respect to k. By taking the limit
k → iλ followed by r → ∞, the first term in the integrand
vanishes and the right-hand side becomes

2iλN

∫ r

0

u2(r′)dr′. (3.25)

Using eqs. (3.9), (3.16) and (3.21) in the vicinity of the
pole leads to

√
1 − ρ(r)w(k, r) = N G(k) f(−k, r) − (λ + ik)

NG
f(k, r),

(3.26)

which upon differentiation with respect to k gives√
1 − ρ(r)ẇ(k, r) =

NĠf(−k, r) + NGḟ(−k, r) − i

NG
f(k, r) (3.27)

− (λ + ik)
NG

ḟ(k, r) + (λ + ik)
Ġ

NG2
f(k, r). (3.28)

At the position of a bound state pole, G(iλ) = 1, con-
sequently

w(iλ, r) =
1√

1 − ρ(r)
[Nf(−iλ, r)] −→ Ne−λr. (3.29)

and

ẇ(iλ, r) =
1√
1−ρ

[
NĠf(−iλ, r)+Nḟ(−iλ, r)− i

N
f(iλ, r)

]
(3.30)

−→ − i

N
eλr, (3.31)

where the limit as r → ∞ was taken in the last two equa-
tions. Since the bound state wave function decreases expo-
nentially with r, the only surviving term on the left-hand
side of eq. (3.24) is that proportional to f(iλ, r). Equating
the two sides of eq. (3.24), and noting that ρ(r) → 0 for
large r, results in

1 = N2

∫ ∞

0

u2(r)dr. (3.32)
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This proves that N is actually the normalization constant
of the bound state wave function. The last result may
equivalently be restated as

lim
k→iλ

[√
2λ(λ2 + k2) v(k, r)

]
= −un , (3.33)

where un is the normalized bound state wave function.

4 The equivalent local energy-dependent
potential

It is a well-known feature of the Kisslinger potential that
it may be transformed into a local but energy-dependent
potential through the transformation on the wave func-
tion [9]

v(k, r) =
χ(k, r)√
1 − ρ(r)

. (4.1)

Substituting the above in the Schrödinger eq. (2.2) leads to

d2χ(k, r)
dr2

+
[
ρ′′(r)

2
− (ρ′(r))2

4(1 − ρ(r))

+
ρ′(r)

r
+ k2 − U(r)

]
χ(k, r)
1 − ρ(r)

= 0. (4.2)

This has the same form of a Schrödinger equation with
an effective energy-dependent potential term ρ(r)k2/(1 −
ρ(r)). As shown in Appendix A, χ(k, r) may be expressed
in terms of a linear combination of Jost solutions and func-
tions. The conditions that U(r) and ρ(r) have to satisfy
in order that the Jost solutions are analytic in the appro-
priate range are discussed in the Appendix.

For bound states k = iλ, λ > 0, the corresponding
equation is

d2φ(r)
dr2

+
[
ρ′′(r)

2
− (ρ′(r))2

4(1 − ρ(r))

+
ρ′(r)

r
− λ2 − U(r)

]
φ(r)

1 − ρ(r)
= 0, (4.3)

where φ(r) is the bound state wave function transformed
according to

u(r) =
φ(r)√
1 − ρ(r)

. (4.4)

The functions χ(k, r) and φ(r) satisfy the boundary con-
ditions

χ(k, r) = φ(r) = 0, (4.5)

and

lim
r→∞χ(k, r)=

1
k

sin(kr+δ0(k)), lim
r→∞u(r)=e−λr. (4.6)

The above boundary conditions and the reality of U(r)
and ρ(r) ensure that both χ(k, r) and φ(r) are real for all

values of r, provided k is real. Therefore, χ(k, r) may be
analytically continued from the real axis into the upper
half of the complex k-plane.

Manipulation of eqs. (4.2) and (4.3) leads to

d
dr

[χ(k, r)φ′(r)−χ′(k, r)φ(r)]=(λ2+k2)
χ(k, r) φ(r)
(1 − ρ(r))

.

(4.7)

Noting that both χ(k, r) and φ(r) vanish at the origin the
above equation may be integrated to give

χ(k, r)φ′(r)−χ′(k, r)φ(r) = (λ2+k2)
∫ r

0

χ(k, r′) φ(r′)
(1−ρ(r′))

dr′.

(4.8)

Defining

w(k, r) = 2ik
√

λ + ik χ(k, r) (4.9)

and proceeding in the same way as we did in the previous
section one arrives at

1 = N2

∫ ∞

0

(
φ√

1 − ρ

)2

dr′. (4.10)

It is worth noting that it is the bound state wave func-
tion u(r) = φ(r)/

√
1 − ρ(r) which is normalized to unity

not φ(r) itself. Thus once again we have shown that N is
actually the normalization factor of the bound state wave
function.

5 Square well Kisslinger potential

The exact solutions of the Schrödinger equation using a
square well Kisslinger potential provide a valuable clue as
to the range of usefulness of the theorem in the non-local
case. Our ansatz for the non-local and local parts of the
potential respectively are

ρ(r) = A θ(a − r), (5.1)

while the local part of the potential is taken to be

U(r) = −Uo θ(a − r), (5.2)

where a is the common radius of both potentials. The
boundary conditions are such that the wave functions
must be continuous at r = a. But the derivatives are not
due to the effect of the non-local term ρ(r) at the sharp
boundary. By integrating the Schrödinger equation from
a − ε to a + ε, the condition on the derivatives is

(1 − A)ψ′(r < a) = ψ′(r > a). (5.3)

It is not difficult to evaluate the s-wave scattering and
the corresponding bound state wave functions in this case.
Substitution of the scattering wave function on the left-
hand side of eq. (3.33), and using La Hospital’s rule, one
readily recovers the right-hand side.
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Fig. 1. Bound state wave function (solid line) and modified
scattering state wave functions evaluated at different values of
k = 0.1, 0.4 and 0.6 represented as dashed line, dotted line
and dash-dotted line, respectively. λ = 0.102. The deviation at
r = 0 is positive and increases with k.

The exact solutions obtained allow us to study devia-
tions from the extrapolation theorem analytically as one
moves away from the bound state pole at k = iλ. This
may be achieved by defining the ratio function

R(k, r) = −
√

2λ(λ2 + k2)
v(k, r)
un(r)

. (5.4)

Since both the local and non-local parts of the potential
have a finite range a, the ratio function defined above may
be expanded as a power series in (λ2 + k2) viz.,

R(k, r) = 1 +
∞∑

p=1

Rp(r)(λ2 + k2)p. (5.5)

In our case it may be shown that R1(r) takes the form

R1(r) =
1

sin(Ka)

×
[
λaz2+[z2+λa(λa+A)(1−A)] sin2(Ka)

(1+λa)[z2+λa(λa+A)]

]1/2

×
[

a2

8z2

[z2+λ2a2−A][(1 + λa)(λa+A)−z2]
(1+λa)[z2+λa(λa+A)]

+
1

z(1 − A)K2
− r2

6(1 − A)
+ O(r4)

]
, (5.6)

where

z = Ka(1 − A). (5.7)

Fig. 2. Bound state wave function (solid line), modified scat-
tering wave function (dashed line) evaluated at k = 0.4 and
the corrected modified scattering wave function (dotted line).
The deviation at the origin is positive. The corrected modi-
fied scattering function agrees very well with the bound state
function. λ = 0.463 and U0 = 2.8.

6 Numerical calculations

In what follows we shall test the theorem numerically. For
a non-local part ρ = 1−A = 0.5, and a shallow local well of
depth U0 = 2.2, width a = 1, only one bound state with
λ = 0.102 may be sustained. Figure 1 shows the bound
state wave function, represented as a solid line in all the
following figures, and the corresponding scattering wave
function modified according to

v(k, r) ≈ − 1√
2λ(λ2 + k2)

un(r), (6.1)

which is evaluated at three different values k = 0.1
(dashed line), k = 0.4 (dotted line) and k = 0.6 (dash-
dotted line). Obviously, the agreement is best for small
values of k. At r = 0 the deviation is positive and in-
creases with k. All the curves cross at the same value of
r ≈ 0.7. The cross-over point may easily be determined
from (5.6) as it occurs when the first-order correction term
vanishes. This crossing phenomena was also seen in the lo-
cal case [4]. Further, the discontinuity in the derivatives
at the boundary is clear.

When the local potential is reduced to −2.8, a single
1s bound state with λ = 0.463 is obtained. In fig. 2 the
dashed line represents the scattering state wave function
evaluated at k = 0.4. At r = 0, the modified scattering
wave function lies above the bound state one. The dotted
line represents the corrected wave function calculated to
first order in (λ2 + k2) using (5.6). For small r, the agree-
ment is very good indicating that higher-order corrections
are very small. To investigate the behavior away from the
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Fig. 3. Bound state wave function (solid line) and modified
scattering state wave function (dashed line) evaluated at k =
0.4. A very good agreement is obtained corresponding to λ =
0.463 and U0 = 13.093.

bound state pole, the scattering wave function is evaluated
at different values of k = 0.6 and 0.8. The results showed
that at the origin the deviation is positive and steadily
increases with k as before. Further, all curves cross at the
same point.

When the local potential is reduced even further U0 =
13.093, a 2s bound state with the same value of λ = 0.463
is obtained. The results are shown in fig. 3 where the scat-
tering wave function (dashed line) is evaluated at k = 0.4.
A good agreement with the theory is obtained at short
distances and the deviation is negative at the origin.

7 Discussion and conclusions

In the non-local case we have shown analytically that the
relative normalisation of s-wave bound and correspond-
ing scattering state wave functions is independent of the
details of the potential at short distances, provided the en-
ergy is weak and the potential has a finite range. This has
been accomplished in two ways. The first dealt with the
non-local term directly, while the other transformed the
potential into an equivalent local but energy-dependent
one.

The theorem is tested analytically as well as numeri-
cally by solving the Schrödinger equation when the non-
local potential took the form of a square well. An ana-
lytical expression for the deviation from the theory was
also derived. The numerical resolution of the Schrödinger
equation in the square well case shows that the theorem is
valid at short distances and works best close to the bound
state poles. The cross-over point, where all the curves in-
tersect, was also seen in the local case [4], and can be easily

predicted by setting the first-order correction in (5.6) to
zero. A proof of the analyticity of the Jost solutions in the
s-wave non-local case is presented.

The author would like to thank the Hashemite university for
the financial support which made this work possible. Valuable
discussions with professors A. Nayfeh, C. Wilkin and Dr. A.
Adawi are gratefully acknowledged.

Appendix A. Analyticity of the Jost solutions
in the non-local case

In this section we shall prove the analyticity of the Jost
solutions so that the scattering function v(k, r) in (2.2)
may be analytically continued from the real axis into the
complex k-plane to the positions of bound states.

As explained in sect. 4 using the transformation

v(k, r) =
χ(k, r)
1 − ρ(r)

, (A.1)

eq. (2.2) may be transformed into

χ′′(k, r) +
[
k2 − Ue(k, r)

]
χ = 0, (A.2)

where Ue(k, r) is an equivalent, effective, energy-
dependent potential given by

Ue(k, r) = − 1
(1 − ρ)

[
ρ′′

2
− ρ′ 2

4(1 − ρ)
+

ρ′

r
− U(r) + ρk2

]
,

(A.3)

with an energy-dependent term ρk2/(1 − ρ). We shall as-
sume that U(r) and ρ(r) satisfy the conditions discussed
in sects. 2.1 and 2.2. Hence

χ(k, 0) = 0, lim
r→∞χ(k, r) =

1
k

sin(kr + δ0(k)). (A.4)

We shall introduce φ(k, r) as another regular solution
of (A.2) satisfying the following boundary conditions:

φ(k, 0) = 0, φ′(k, 0) = 1 (A.5)

In what follows we follow closely the method presented by
[10] for the local s-wave case and make amendments for
the fact that the potential is energy dependent.

For k real, eq. (A.2) is real and the boundary condi-
tions (A.5) are also real. Hence φ(k, r) is real and depends
on k2, consequently it is an even function of k. For com-
plex values of k, the expression in the square brackets
in (A.2) has no singularities at finite values of k, hence
it is an entire function of k. According to the theorem
of Poincaré [11], φ(k, r), which is a solution of (A.2) sat-
isfying boundary conditions that do not depend on k, is
an analytic function of k in the open complex k-plane.
As r → ∞ both ρ(r) and U(r) vanish and the function
e−ikr is a solution of (A.2). This function is identical to
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the asymptotic form of the Jost solution defined (asymp-
totically) as

lim
r→∞ f(k, r) = e−ikr. (A.6)

This defines f(k, r) in the lower half of the complex k-
plane. Introducing f(k, r) as a solution for (A.2) we may
write

f ′′ + k2f = Ue(k, r)f. (A.7)

With the boundary condition (A.6) the above differen-
tial equation may be transformed into a Volterra integral
equation viz.,

g(k, r) = 1 +
∫ ∞

r

dr′ Gk(r′ − r)Ue(k, r′) g(k, r′), (A.8)

where

g(k, r) = eikrf(k, r), (A.9)

and

Gk(x) ≡
∫ x

0

dy e−2iky. (A.10)

The solution of eq. (A.8) may be written as

g(k, r) =
∞∑

n=0

gn(k, r), (A.11)

where g0 = 1 and

gn =
∫ ∞

r

dr′ Gk(r′ − r)Ue(k, r′) gn−1, (A.12)

For Im(k) < 0, we shall show that the series (A.11) con-
verges. In this case

|Gk(r′ − r)| ≤ r′ − r ≤ r′. (A.13)

Therefore, the following conditions apply:

|g1| ≤ p(r), p(r) ≡
∫ ∞

r

dr′ r′ |Ue(k, r′)|, (A.14)

|g2| ≤
∫ ∞

r

dr′ r′ |Ue(k, r′)|p(r′) =

∫ p(r)

0

dp p =
p(r)2

2!
, (A.15)

|g3| ≤
∫ ∞

r

dr′ r′ |Ue(k, r′)|p(r)2

2!
=

p(r)3

3!
, ... . (A.16)

Hence

|gn| ≤ p(r)n

n!
≤ p(0)n

n!
, (A.17)

where

p(0) =
∫ ∞

0

dr′ r′ |Ue(k, r′)|. (A.18)

The series (A.11) converges uniformly provided p(0) < ∞.
This is satisfied provided
∫ ∞

0

dr r |U(r)| < ∞,

∫ ∞

0

dr r|ρ′′(r)| < ∞. (A.19)

To prove the analyticity of g(k, r) with respect to k, we
must show that the sequence of derivatives with respect
to k also converges uniformly. Differentiating (A.11) and
(A.12) with respect to k results in

|ġn| =
∫ ∞

r

dr′
[
Ġ Ue + G U̇e

]
|gn−1|

+
∫ ∞

r

dr′ G Ue|ġn−1|. (A.20)

Noting that

|Gk(r − r′)| < |Ġk(r − r′)| ≤ (r′ − r)2 ≤ r′2, (A.21)

where the dot means differentiation with respect to k, one
obtains

|ġn| <

∫ ∞

r

dr′ r′2
[
|Ue(k, r′)| + |U̇e(k, r′)|

]
|gn−1|

+
∫ ∞

r

dr′ r′2 |Ue(k, r′)| |ġn−1|. (A.22)

Hence

|ġ1| ≤ q(r),

q(r) ≡
∫ ∞

r

dr′ r′2
[
|Ue(k, r′)| + |U̇e(k, r′)|

]
, (A.23)

|ġ2| <

∫ ∞

r

dr′ r′2
[
|Ue(k, r′)| + |U̇e(k, r′)|

]
|g1|

+
∫ ∞

r

dr′ r′2 |Ue(k, r′)| |ġ1|. (A.24)

Using

|g1| < |ġ1| ≤ q(r), (A.25)

we may write

|ġ2| < 2
∫ ∞

r

dq q(r) = 2
q(r)2

2!
. (A.26)

Similarly,

|ġ3| <

∫ ∞

r

dr′ r′2
[
|Ue(k, r′)| + |U̇e(k, r′)|

]
|g2|

+
∫ ∞

r

dr′ r′2 |Ue(k, r′)| |ġ2|. (A.27)

Since

|g2| < |ġ2| < 2
q(r)2

2!
, (A.28)
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we have

|ġ3| < 4
q(r)3

3!
. (A.29)

Obviously, we may write the general term of the series of
derivatives as

|ġn| < 2(n−1) q(r)n

n!
. (A.30)

Defining

q(0) =
∫ ∞

0

dr′ r′2
[
|Ue(k, r′)| + |U̇e(k, r′)|

]
, (A.31)

we have

|ġn| < 2(n−1) q(r)
n

n!
< 2(n−1) q(0)n

n!
. (A.32)

Hence, the series

ġ(k, r) =
∞∑

n=0

ġn(k, r) (A.33)

converges uniformly, provided
∫ ∞

0

dr′ r′2
[
|Ue(k, r′)| + |U̇e(k, r′)|

]
< ∞. (A.34)

Given that

U̇e(k, r) = 2k
ρ(r)

1 − ρ(r)
, (A.35)

inequality (A.34) is satisfied if
∫ ∞

0

dr r2 |U(r)| < ∞,

∫ ∞

0

dr r2 |ρ(r)| < ∞. (A.36)

Hence we have shown that the Jost solution f(k, r), which
is related to g(k, r) by (A.9), defined in the lower-half
complex k-plane exists and is analytic for complex k when
Im(k) < 0 and is continuous along the real k-axis.

The region of analyticity of f(k, r) may be extended
into the upper half of the complex k-plane if we set the
condition∫ ∞

0

dr emr |U(r)| < ∞,

∫ ∞

0

dr emr |ρ(r)| < ∞, (A.37)

where m is real and positive. In this case the func-
tion f(k, r) is analytic for Im(k) < m/2. It can also
be shown that f(k, r) has simple zeros that lie on
the imaginary axis in the lower half of the com-
plex k-plane, by following the method described in [10].

In the same way, it can be shown that f(−k, r), which
is defined asymptotically by

lim
r→∞ f(−k, r) = eikr, (A.38)

is analytic in the upper half of the complex k-plane. If the
conditions in (A.37) are satisfied, then f(−k, r) is analytic
for Im(k) > −m/2, and has simple zeros that lie on the
imaginary axis in the upper half of the complex k-plane.

The function φ(k, r) may be written as

φ(k, r) = af(k, r) + bf(−k, r), (A.39)

and the constants a and b may be determined using the
boundary conditions (A.5), resulting in

φ(k, r) = − 1
2ik

[f(−k)f(k, r) − f(k)f(−k, r)] , (A.40)

where

f(±k) = f(±k, 0). (A.41)

It is not difficult to show that [2]

χ(k, r) =
1

|f(k)|φ(k, r), (A.42)

and by using (A.1), we have

v(k, r) = − 1
2ik

1√
1 − ρ(r)

1
|f(k)|

× [f(−k)f(k, r) − f(k)f(−k, r)] . (A.43)

That is v(k, r) is expressed in terms of a term depend-
ing on the non-local term ρ(r) and a linear combination
of Jost solutions.
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